Introductory Time Series with R

Author: Paul S.P. Cowpertwait
Publisher: Springer Science & Business Media
ISBN: 9780387886985
Release Date: 2009-05-28
Genre: Mathematics

This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.

Introductory Time Series with R

Author: Paul S.P. Cowpertwait
Publisher: Springer
ISBN: 0387886974
Release Date: 2009-06-09
Genre: Mathematics

This book gives the reader a step-by-step introduction to analyzing time series using the open source software R. Each time series model is illustrated through practical applications addressing contemporary issues, and is defined in mathematical notation.

Time Series Analysis and Its Applications

Author: Robert H. Shumway
Publisher: Springer
ISBN: 9781441978646
Release Date: 2010-11-24
Genre: Mathematics

Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed to be useful as a text for graduate level students in the physical, biological and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, stochastic volatility, wavelets and Monte Carlo Markov chain integration methods. The third edition includes a new section on testing for unit roots and the material on state-space modeling, ARMAX models, and regression with autocorrelated errors have been expanded. Also new to this edition is the enhanced use of the freeware statistical package R. In particular, R code is now included in the text for nearly all of the numerical examples. Data sets and additional R scripts are now provided in one file that may be downloaded via the World Wide Web. This R supplement is a small compressed file that can be loaded easily into R making all the data sets and scripts available to the user with one simple command. The website for the text includes the code used in each example so that the reader may simply copy-and-paste code directly into R. Appendix R, which is new to this edition, provides a reference for the data sets and our R scripts that are used throughout the text. In addition, Appendix R includes a tutorial on basic R commands as well as an R time series tutorial.

Time Series Analysis

Author: Jonathan D. Cryer
Publisher: Springer Science & Business Media
ISBN: 9780387759586
Release Date: 2008-04-04
Genre: Business & Economics

This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Nonlinear Time Series Analysis with R

Author: Ray Huffaker
Publisher: Oxford University Press
ISBN: 9780198782933
Release Date: 2017-07-27
Genre: Mathematics

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians--with limited knowledge of nonlinear dynamics--to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic. The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.

Introduction to Time Series and Forecasting

Author: Peter J. Brockwell
Publisher: Springer
ISBN: 9783319298542
Release Date: 2016-08-19
Genre: Mathematics

This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user's own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Many additional special topics are also covered. New to this edition: A chapter devoted to Financial Time Series Introductions to Brownian motion, Lévy processes and Itô calculus An expanded section on continuous-time ARMA processes

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9781118448960
Release Date: 2012-11-07
Genre: Mathematics

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Introductory Statistics with R

Author: Peter Dalgaard
Publisher: Springer Science & Business Media
ISBN: 9780387790541
Release Date: 2008-06-27
Genre: Mathematics

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Applied Time Series Analysis with R Second Edition

Author: Wayne A. Woodward
Publisher: CRC Press
ISBN: 9781498734318
Release Date: 2017-02-17
Genre: Mathematics

Virtually any random process developing chronologically can be viewed as a time series. In economics closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis with R, Second Edition includes examples across a variety of fields, develops theory, and provides an R-based software package to aid in addressing time series problems in a broad spectrum of fields. The material is organized in an optimal format for graduate students in statistics as well as in the natural and social sciences to learn to use and understand the tools of applied time series analysis. Features Gives readers the ability to actually solve significant real-world problems Addresses many types of nonstationary time series and cutting-edge methodologies Promotes understanding of the data and associated models rather than viewing it as the output of a "black box" Provides the R package tswge available on CRAN which contains functions and over 100 real and simulated data sets to accompany the book. Extensive help regarding the use of tswge functions is provided in appendices and on an associated website. Over 150 exercises and extensive support for instructors The second edition includes additional real-data examples, uses R-based code that helps students easily analyze data, generate realizations from models, and explore the associated characteristics. It also adds discussion of new advances in the analysis of long memory data and data with time-varying frequencies (TVF).

Multivariate Time Series Analysis

Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 9781118617755
Release Date: 2013-11-11
Genre: Mathematics

An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.

Introduction to Time Series Analysis and Forecasting

Author: Douglas C. Montgomery
Publisher: John Wiley & Sons
ISBN: 9781118745151
Release Date: 2015-04-21
Genre: Mathematics

Praise for the First Edition "…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.

Dynamic Linear Models with R

Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 9780387772387
Release Date: 2009-06-12
Genre: Mathematics

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Hidden Markov Models for Time Series

Author: Walter Zucchini
Publisher: CRC Press
ISBN: 9781482253849
Release Date: 2016-06-22
Genre: Mathematics

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture–recapture data

Forecasting principles and practice

Author: Rob J Hyndman
Publisher: OTexts
ISBN: 9780987507105
Release Date: 2014-09-20
Genre: Business & Economics

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.