Data Science at the Command Line

Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491947821
Release Date: 2014-09-25
Genre: COMPUTERS

This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms

Data Science at the Command Line

Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491947807
Release Date: 2014-09-25
Genre: Computers

This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms

Doing Data Science

Author: Cathy O'Neil
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449363895
Release Date: 2013-10-09
Genre: Computers

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Science from Scratch

Author: Joel Grus
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491904404
Release Date: 2015-04-14
Genre: BUSINESS & ECONOMICS

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Python Data Science Handbook

Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491912140
Release Date: 2016-11-21
Genre: Computers

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Data Science for Business

Author: Foster Provost
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449374280
Release Date: 2013-07-27
Genre: Computers

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

I Heart Logs

Author: Jay Kreps
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491909355
Release Date: 2014-09-23
Genre: Computers

Why a book about logs? That’s easy: the humble log is an abstraction that lies at the heart of many systems, from NoSQL databases to cryptocurrencies. Even though most engineers don’t think much about them, this short book shows you why logs are worthy of your attention. Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses—data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models. Go ahead and take the plunge with logs; you’re going love them. Learn how logs are used for programmatic access in databases and distributed systems Discover solutions to the huge data integration problem when more data of more varieties meet more systems Understand why logs are at the heart of real-time stream processing Learn the role of a log in the internals of online data systems Explore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn

Learning to Love Data Science

Author: Mike Barlow
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491936542
Release Date: 2015-10-27
Genre: Computers

Until recently, many people thought big data was a passing fad. "Data science" was an enigmatic term. Today, big data is taken seriously, and data science is considered downright sexy. With this anthology of reports from award-winning journalist Mike Barlow, you’ll appreciate how data science is fundamentally altering our world, for better and for worse. Barlow paints a picture of the emerging data space in broad strokes. From new techniques and tools to the use of data for social good, you’ll find out how far data science reaches. With this anthology, you’ll learn how: Analysts can now get results from their data queries in near real time Indie manufacturers are blurring the lines between hardware and software Companies try to balance their desire for rapid innovation with the need to tighten data security Advanced analytics and low-cost sensors are transforming equipment maintenance from a cost center to a profit center CIOs have gradually evolved from order takers to business innovators New analytics tools let businesses go beyond data analysis and straight to decision-making Mike Barlow is an award-winning journalist, author, and communications strategy consultant. Since launching his own firm, Cumulus Partners, he has represented major organizations in a number of industries.

Guerrilla Analytics

Author: Enda Ridge
Publisher: Morgan Kaufmann
ISBN: 9780128005033
Release Date: 2014-09-25
Genre: Computers

Doing data science is difficult. Projects are typically very dynamic with requirements that change as data understanding grows. The data itself arrives piecemeal, is added to, replaced, contains undiscovered flaws and comes from a variety of sources. Teams also have mixed skill sets and tooling is often limited. Despite these disruptions, a data science team must get off the ground fast and begin demonstrating value with traceable, tested work products. This is when you need Guerrilla Analytics. In this book, you will learn about: The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting. Reproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutiny. Practice tips and war stories: 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research. Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions. Data gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting Reproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutiny Practice tips and war stories: 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions Data gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects

Practical Machine Learning A New Look at Anomaly Detection

Author: Ted Dunning
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491914182
Release Date: 2014-07-21
Genre: Computers

Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts

Hands On Programming with R

Author: Garrett Grolemund
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449359119
Release Date: 2014-06-13
Genre: COMPUTERS

Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you’ll learn how to load data, assemble and disassemble data objects, navigate R’s environment system, write your own functions, and use all of R’s programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You’ll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer’s memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R’s package system and debugging tools Practice and apply R programming concepts as you learn them

Agile Data Science

Author: Russell Jurney
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449326913
Release Date: 2013-10-15
Genre: Computers

Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track

Beautiful Data

Author: Toby Segaran
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449379292
Release Date: 2009-07-14
Genre: Computers

In this insightful book, you'll learn from the best data practitioners in the field just how wide-ranging -- and beautiful -- working with data can be. Join 39 contributors as they explain how they developed simple and elegant solutions on projects ranging from the Mars lander to a Radiohead video. With Beautiful Data, you will: Explore the opportunities and challenges involved in working with the vast number of datasets made available by the Web Learn how to visualize trends in urban crime, using maps and data mashups Discover the challenges of designing a data processing system that works within the constraints of space travel Learn how crowdsourcing and transparency have combined to advance the state of drug research Understand how new data can automatically trigger alerts when it matches or overlaps pre-existing data Learn about the massive infrastructure required to create, capture, and process DNA data That's only small sample of what you'll find in Beautiful Data. For anyone who handles data, this is a truly fascinating book. Contributors include: Nathan Yau Jonathan Follett and Matt Holm J.M. Hughes Raghu Ramakrishnan, Brian Cooper, and Utkarsh Srivastava Jeff Hammerbacher Jason Dykes and Jo Wood Jeff Jonas and Lisa Sokol Jud Valeski Alon Halevy and Jayant Madhavan Aaron Koblin with Valdean Klump Michal Migurski Jeff Heer Coco Krumme Peter Norvig Matt Wood and Ben Blackburne Jean-Claude Bradley, Rajarshi Guha, Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon Willighagen Lukas Biewald and Brendan O'Connor Hadley Wickham, Deborah Swayne, and David Poole Andrew Gelman, Jonathan P. Kastellec, and Yair Ghitza Toby Segaran

The Future of Nursing

Author: Committee on the Robert Wood Johnson Foundation Initiative on the Future of Nursing, at the Institute of Medicine
Publisher: National Academies Press
ISBN: 9780309158237
Release Date: 2011-02-08
Genre: Medical

The Future of Nursing explores how nurses' roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in America's increasingly complex health system. At more than 3 million in number, nurses make up the single largest segment of the health care work force. They also spend the greatest amount of time in delivering patient care as a profession. Nurses therefore have valuable insights and unique abilities to contribute as partners with other health care professionals in improving the quality and safety of care as envisioned in the Affordable Care Act (ACA) enacted this year. Nurses should be fully engaged with other health professionals and assume leadership roles in redesigning care in the United States. To ensure its members are well-prepared, the profession should institute residency training for nurses, increase the percentage of nurses who attain a bachelor's degree to 80 percent by 2020, and double the number who pursue doctorates. Furthermore, regulatory and institutional obstacles -- including limits on nurses' scope of practice -- should be removed so that the health system can reap the full benefit of nurses' training, skills, and knowledge in patient care. In this book, the Institute of Medicine makes recommendations for an action-oriented blueprint for the future of nursing.

Python for Data Analysis

Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491957639
Release Date: 2017-09-25
Genre: Computers

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples